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temperatures: Gutzwiller-type variational approach 
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Tokyo 106, Japan 
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Abstract. A theory is presented for finite-temperature band magnetism which takes into 
account the effect of electron correlations using the Gutzwiller-type variational approach. 
The functional-integral method recently proposed by Kotliar and Ruckenstein is combined 
with the alloy-analogy approximation to include the effect of local spin fluctuations at finite 
temperatures. The theory at T = 0 K is equivalent to Gutzwiller’s approximation for the 
correlated ground state, while in the high-temperature limit it reduces to the local spin- 
fluctuation theory developed previously by Hasegawa and Hubbard. Numerical calculations 
for the half-filled simple-cubic Hubbard model demonstrate that both electron correlations 
and local spin fluctuations play important roles at finite temperatures. The Brinkman-Rice- 
type metal-insulator transition is critically discussed on the basis of the model calculation. 

1. Introduction 

In the last decade we have seen significant progress in the theory of finite-temperature 
band magnetism (for reviews see Gautier 1982, Capellmann 1987). Various types of 
approximation theories have been proposed so far. Most of them employ the Stra- 
tonovich-Hubbard functional-integral method (Stratonovich 1958, Hubbard 1959), 
which transforms the two-body Hamiltonian to the effective one-electron Hamiltonian, 
Heff. Depending on the method of choosing Heff, we can classify the proposed theories 
into three categories: (i) the fluctuating band theory (Korenman et a1 1977, Capellmann 
1979); (ii) the disordered-local-moment approach (Hubbard 1979, Hasegawa 1979); and 
(iii) the interpolation theory (Moriya and Takahashi 1978, Haines et a1 1985). The 
fluctuating band theory assumes a large short-range magnetic order (SMO) of about 20 A 
in Fe and Ni, while the disordered-local-moment approach postulates a vanishing SMO. 
Interpolating theories assume the form of Heff to interpolate between the weak- and 
strong-interaction limits and/or between the small- and large-sMo limits. There have 
been controversies on the validity of the proposed theories, and we have no agreement 
yet as to which approach among the three provides us with the best description of various 
observed finite-temperature properties of transition metals. This is because there always 
exist uncertainties in interpreting experimental data and because it is impossibly difficult 
to obtain analytically exact solutions for three-dimensional systems. 
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Quite recently several attempts have been reported of applying the Monte Carlo 
(MC) simulation method to the simple-cubic Hubbard model. Hirsch (1986) and Scalettar 
et a! (1988) performed MC calculations for clusters of 23-103 to calculate various quantities 
such as the susceptibility and the energy as a function of the temperature and the 
interaction strength. In order to discuss the ground-state properties, Yokoyama and 
Shiba (1987a, b) proposed the variational Monte Carlo (VMC) method, which exactly 
calculates the expectation values for the Gutzwiller wavefunctions (Gutzwiller 1965). 
These ‘exact’ calculations are very useful to investigate the validity of analytic approxi- 
mation theories. It has been shown (Kakehashi and Hasegawa 1987,1988) that the NCel 
temperature obtained by the MC method is well reproduced in the calculation using the 
disordered-local-moment theory of Hasegawa (1979,1980a) and Hubbard (1979). This 
justifies to a large extent the local spin-fluctuation theory of Hasegawa and Hubbard, 
which has been successfully applied to various problems (Hasegawa 1980b, 1981, Hub- 
bard 1981, Hasegawa and Pettifor 1980, Kakehashi 1981, 1983, 1985), including the 
surface-related subjects (Hasegawa 1986a, b, 1987a, b, c, Hasegawa and Herman 
1988a. b). 

In the Hacegawa-Hubbard (HH) theory, the two-field functional-integral method 
within the static approximation is combined with the alloy-analogy approximation to 
include the effect of local spin fluctuations, which is indispensable in discussing magnetic 
and thermodynamic properties of transition metals at finite temperatures. A single atom 
of a ‘pure’ magnetic metal is regarded as an ‘impurity’ embedded in the host ‘multi- 
component alloy’. The self-consistency conditions between the impurity and the host 
determine finite-temperature properties. The alloy-analogy approximation of the HH 
theory is an extension of Cyrot’s binary alloy theory (Cyrot 1972), avoiding his local 
saddle-point approximation. This generalisation yields a unified description covering 
weak- and strong-coupling limits. It reduces to the Hartree-Fock approximation in the 
weak-interaction limit or at T = 0 K,  and in the strong-coupling limit it is equivalent to 
the molecular-field theory for the Heisenberg model. The HH theory correctly describes 
the high-temperature behaviour; for example, it leads to the exact Curie constant. It has 
been shown that the calculated Curie temperature is much reduced compared with that 
in the Hartree-Fock or Stoner theory. The observed Curie-Weiss susceptibility and 
the appreciable magnetic entropy in the paramagnetic state are well explained in the 
calculations (Hasegawa 1980b, 1983a, b, 1984, Kakehashi 1981,1983,1985). 

All the theories mentioned above employed the static approximation to the 
functional-integral method, and most of them reduce, at T = 0 K, to the Hartree-Fock 
approximation. Therefore the correlations among electrons are completely neglected. 
There are two approaches to include the effect of electron correlations at finite tem- 
peratures. The first method is to employ the local-spin-density method combined with 
the Korringa-Kohn-Rostoker coherent-potential approximation (KKR-CPA). Oguchi et 
a1 (1983) and Pindor et a1 (1983) applied it to paramagnetic Fe to obtain detailed band 
structures. This method is, however, valid only for strongly magnetic systems such as 
Fe, and at the moment no solutions for the ferromagnetic state have been reported 
except for the ground state, even for Fe. As the second approach, Kakehashi and Fulde 
(1985, referred to as KF) proposed a variational method based on the Hubbard model to 
include electron correlations at finite temperatures. Their free energy at T = 0 K reduces 
to the ground-state energy obtained in the local correlation theory of Stollhoff and Fulde 
(1978). In this theory the Gutzwiller-type wavefunction for the correlated states is 
constructed with the projection operators onto the Hartree-Fock state. The correction 
to the Hartree-Fock energy is calculated up to the second order of the projection 
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operators. This is in contrast with the original Gutzwiller approximation (Gutzwiller 
1965), in which the correlated state is projected onto the non-magnetic state to include 
the effect of electron correlations ‘exactly’ within the quasi-chemical approximation. 
Although the local correlation theory of Stollhoff and Fulde (1978) has been proved 
very useful for atoms, molecules and transition metals, it cannot be applied to strongly 
correlated systems because it is essentially a perturbation theory (Oles 1981, Stollhoff 
and Thalmeier 1981, Oles and Stollhoff 1984). 

It is a challenging subject to develop a theory that takes into account the effect of 
electron correlations at finite temperatures along Gutzwiller’s original approach. Chao 
and Berggren (1977) first tried to extend Gutzwiller’s scheme to finite temperature. 
Unfortunately their discussion was confined to the weak-interaction regime because 
they faced difficulty in calculating the magnetic entropy, which should reduce to In 2 in 
the high-temperature limit. Note that, although their theory can yield the entropy of 
In 2 at very high temperatures where the fermion degeneracy is removed, the magnetic 
entropy nearly corresponding to disordered moments is experimentally realised at much 
lower temperature (but above the Curie temperature). Quite recently, Kotliar and 
Ruckenstein (1 986) proposed a new functional-integral method introducing boson fields. 
It clarifies the relationship between the Gutzwiller approximation and the slave-boson 
approach which is now widely employed in connection with the heavy-fermion problem 
(Coleman 1984, Read and Newns 1983). They showed that its simplest saddle-point 
approximation leads, at T = 0 K, to results obtained in the Gutzwiller approximation. 
The finite-temperature saddle-point approximation to this functional-integral method 
is equivalent to the theory of Chao and Berggren (1977), and then it has the same 
difficulty in calculating magnetic entropy as discussed above. We should remember that, 
in the disordered-local-moment approach, the appreciable magnetic entropy arises from 
disordered moments and it becomes In 2 sufficiently above the Curie temperature. We 
expect that, if the alloy-analogy approximation of the HH theory is combined with the 
functional-integral method of Kotliar and Ruckenstein, we may construct a sound theory 
which can go beyond the HH theory. Such an attempt is the purpose of the present study. 
Our new theory agrees with Gutzwiller’s theory at T = 0 K while in the high-temperature 
limit it reduces to the HH theory. We can show that electron correlations play important 
roles not only in the ground state but also at finite temperatures. 

The outline of this paper is as follows. In the next section (§ 2), we develop the finite- 
temperature band theory employing the functional-integral method with the alloy- 
analogy approximation. Numerical calculations are performed for the half-filled simple- 
cubic Hubbard model, whose results are reported in § 3. The final section (§ 4) is devoted 
to conclusions and supplementary discussions. 

2. Formulation 

2.1. Functional-integral method 

We adopt the single-band Hubbard model given by 

H = 2 E tl,ciac,, + E UC?? c l ?  C:J c l :  
0 I . ]  I 

where c : ~  ( c i a )  is a creation (annihilation) operator of an electron with spin o a t  site i ,  tij 
is the hopping matrix and U is the on-site electron interaction. In order to enlarge the 
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Fock space at each site in analogy with the ‘slave-boson’ approach (Coleman 1984, Read 
and Newns 1983), Kotliar and Ruckenstein (1986) introduced a set of four bosons 
represented by the creation (annihilation) operators, e: (e,),p;, (piu) ( a  = t , 1 ) and 
d: (dl). The Bose fields, e,, pIu and d,, play roles, respectively, as projection operators 
onto the empty, singly occupied with spin o and doubly occupied states at each site. 
Unphysical states in this enlarged Fock space can be eliminated by imposing a set of 
constraints (Kotliar and Ruckenstein 1986): 

zp;,pI, + e:e, + d:d, = 1 (2.2a) 
0 

C h l  = PfUP,, + dldl. (2.26) 

Equation ( 2 . 2 ~ )  shows that no more and no less than one of four possible states must be 
occupied at each site, while equation (2.26) denotes the two ways of counting the fermion 
occupancy of a given spin. We get the new Hamiltonian, which has the same matrix 
elements as the original one, given by 

(2.3) 
U I , ]  I 

with 

ZIU = elip1, + Pf-04.  (2.4) 
To calculate the partition function, 2, the functional-integral method is applied to 
equation (2.3) (Popov 1983). We incorporate the constraints given by equations ( 2 . 2 ~ )  
and (2.26) by introducing the two Lagrangian multipliers, AI’) and A!:), to get (Kotliar 
and Ruckenstein 1986) 

Z = 1 De Dp, Dd  DA(’)DAL2) exp(-jo’ d t  S ( r ) )  (2.5) 

with 

~ ( t )  = z ( e : ( a r  + iA!l))e, + 1~.pl*,(at + iAI1) - iAI:))plo 
1 U 

+ d t ( d t  + U + iA:’) - iA!:))dl - Ai‘) 
\ 

+ tr ln[6,(dt - ah + iAI:)) + zl,z,,t,]) (2.6) 

where De = II ,d(Re e,)d(Im e l )  etc. are Grassman variables (Berezin 1966). There is 
an ambiguity in choosing the form of ztu. If the calculation is performed exactly, this 
ambiguity presents no difficulties. This is not the case, however, when any approximation 
is employed. Kotliar and Ruckenstein (1986) showed that if z,, in equation (2.4) is 
replaced by 

) - ‘ W  ( 2  * 7) t t 
21, = (1 - d:dl - P:uPI,>-”2(e:P,, + Pl-ud, - el et - PI-OPI-0 
the simplest saddle-point approximation to equation (2.5) leads to the correct result in 
both the atomic and vanishing interaction limits, reproducing the Gutzwiller approxi- 
mation at T = 0 K. 

Before we apply the alloy-analogy approximation to the functional-integral method 
mentioned above, we make the expressions for the functional integral into a more 
transparent and manageable form, by taking the following steps: 
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(i) the static approximation is used for boson fields, and integrations with respect to 

(ii) we adopt the changes of variables defined by 
their imaginary parts are carried out; 

p fy  + p:+ + 2 d f  = n,  p f r  - P I J  2 = m, (2.8a) 

(i/2)(A(;) + A(?)) = v ,  (2.8b) 

where n, stands for the electron number, m, the magnetic moment, and E, and v, denote 
the exchange and charge fields, respectively; 

(iii) the saddle point approximation is used for A(') and the integral over e fields is 
eliminated. 

Then we obtain the expression for 2 given by 

(i/2)(A(tj - A(;') = - E, 

Z = Dg Dm Dv Dn D 6  exp(-PS) I (2.9) 

where 

Here 6, = d: is the double occupancy, qlU = zf, the band-narrowing factor and Tr 
includes the trace over fermion variables. For integrations with respect to m,, n,, v ,  and 
a,, we again adopt the saddle-point approximation to get 

2 = Dgexp(-PY) (2.12) J 

I I 
with 

Y = ( U 6 ,  + Elml - v , n , )  + def(e)(l/?c) Im Tr In(& - Heif) (2.13) 

wheref(e) is the Fermi distribution function. The saddle-point values of m,, n,, v, and 6 ,  
are determined by the simultaneous equations given by 

(2.14a) 

(2.14b) 

( 2 . 1 4 ~ )  

(2.14d) 

We will shortly evaluate RjU = d S / d q j u  in equations (2.14a)-(2.14d) by using the single- 
site coherent-potential approximation (CPA) (see equations ( 2 . 2 6 ~ )  and (2.26d)).  The 
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optimum value of the band-narrowing factor, qta, is obtained with the use of equations 
(2.2a), (2.7) and (2.8) as a function of n,, m, and 6, as 

qlo = q,u(nr, m,, 8 , )  

- 2{[(n, + am, - 26,)(1 - n, + s,)]"* + [6,(n, - am, - 28,)]"2}2 - 
(n, + am,) (2  - n, - am,) 

(2.15) 

2.2. AIloy-analogy approximation 

We now apply the alloy-analogy approximation (Hubbard 1979, Hasegawa 1979,1980a) 
to the functional integral given by equations (2.11)-(2.13). We regard Heff in equation 
(2.11) as a multi-component alloy with the diagonal ( v,, E , )  and off-diagonal randomness 
(qlu).  We employ the single-site approximation, assuming the concentration distribution 
C({E,}) to be given by 

C({EJ) = n C(EI)* (2.16) 
I 

The diagonal and off-diagonal randomnesses in Heff are treated by the extended 
coherent-potential approximation (Shiba 1971). 

In order to treat both the ferromagnetic (F) and antiferromagnetic (AF) states on the 
same footing, we divide the crystal into two sublattices, A and B. The sites belonging to 
A and B lattices are hereafter specified by indicesj and I ,  respectively. When expressions 
for equations are common for both sublattice sites, we specify them by the index i (= j  
and I ) .  We assume that, for the antiferromagnetic wavevector Q, the relation & k + Q  = 
-&k is satisfied, Ek being the Fourier transform of tIj in equation (2.1). 

The single-site approximation for the electron free-energy functional leads to (Hase- 
gawa 1980a) 

(2.17a) F =  E - T(S1 + 5'2) 
with 

S2 = -E (In C(Ei))  

Pju(E, 6 j )  = (-1,'n) Im{qi,'[Kit, + (xju - z A a ) I - ' I  

(2.17d) 

(2.17e) 

i 

and 

P,u(&,  E l )  = ( - 1 / 4  Im{q;,'[K& + V l U  - ~ . B a ) l - ' l *  (2.17f) 

Here E denotes the internal energy, S1 the one-electron entropy and S2 the entropy 
arising from the fluctuating exchange field. The bracket ( ) stands for 
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where the locators are given by 

X,,(&) = ( E  - V f  + aE,)/41u. 

The local Green functions are given by 

KAo(E)  = [zBu(E) /zAo(E) l  1’2Fo (n U )  

KBo ( E )  = [zAu(E) /zBo (&)I 1’2Fo(R o )  

(2.21) 

(2.22a) 

(2.22b) 

with 

n o (  &) = [E Ao ( & ) E  Bo (&)I ”’ (2.23) 

F o ( & )  = de’  P O ( & ’ ) / ( &  - E ’ )  (2.24) 

P O ( & )  being the unperturbed density of states. Note that for the ferromagnetic state, we 
get KAo(&) = KBo(&) = F0(S2,). It is easy to see that the distribution function, C(E,) ,  
satisfies the variational condition dF/dC({,) = 0 (Ducastelle 1975). 

Next we examine the self-consistent equations (equations (2.14a)-(2.14d)) to get 
the saddle-point values of n,, m, and 6,. A combination of equations (2.14a)-(2.14d) and 
the single-site approximation leads to 

E ,  = ( J , / 2 k ”  (2.25a) 

V , ( E , >  = ( W + , ( E l )  (2.25b) 

i 
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(2 .25~)  

(2.25d) 

(2.25e) 

with 

(2 .27~)  

The values of qiu and its derivatives are given by equation (2.15) with the saddle-point 
values to be determined self-consistently. We introduced the effective exchange ( j i )  and 
Coulomb ( U i )  interactions defined by equations (2 .26~)  and (2.26b), which are generally 
reduced compared with the bare U because of the electron correlations. They are very 
useful when we calculate various physical quantities. For example, the susceptibilities 
are easily calculated by using the linear-response theory in terms of .f and U .  They also 
provide us with a clear physical picture in understanding calculated results. We present 
in appendix 1 supplementary discussions on qiu and j, for the half-filled band. Cal- 
culations of the ground-state susceptibilities by using 1 and U will be discussed in 
appendix 2. 

The averages of local charge and magnetic moment are obtained as 

(2.28) 

(2.29) 

where ml(El) and n,(lj,) are given by equation (2.2%) and (2.25d). By using the identity 
(nfu) = ( n f u ) ,  we get the amplitudes of local charge and magnetic moment as 

(2.30) 

By employing the formalism presented so far, we can discuss electron correlations 
at finite temperatures. Their effects are essentially included in two quantities: the 
reduced interactions (j,, U l )  and the band-narrowing factor (q,u). They represent the 
main effects of electron correlations, reducing the stability of magnetic long-range order 
and enhancing the atomic character for the amplitude of local magnetic moments 
(Gutzwiller 1965, Kanamori 1963, Hubbard 1964). We should note that the arguments 
(nf  , m, and 6,) in j,, U, and qlo, are local quantities. Since the local spin polarisation, 
namely the local moment, persists even above the Curie (NCel) temperature, we can 
take into account the electron correlation at finite temperatures as in the ground state. 

(mt)  = 2(n) - (n2) = (n)  - 2(6). 
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It should also be noted that, owing to the boson fields introduced in the Kotliar- 
Ruckenstein functional-integral method, the present theory can take into account the 
effect of electron correlations even within the static and alloy-analogy approximations; 
this effect is not included in the static-approximation approaches, such as the HH theory, 
based on the Stratonovich-Hubbard method. 

The most tedious task in performing our program is to solve the CPA equation, 
equations (2.20a)-(2.20b). It involves calculations including the average over &-fields 
with probability C ( & ) ,  which depends on the coherent locator to be determined self- 
consistently. In order to simplify the CPA equation, we adopt the decoupling approxi- 
mation employed previously (Hasegawa 1980a) to get 

EAU = (&/ (q]U)  - ( ' ] / q ] U )  + d E J / q J U ) )  

+ {['A, - ( & / ( q l U )  - ( ' , / q J U ) ) ] *  - (E; /q;u)}  K A ~ .  (2.31~) 

and 

EBu = ( & / ( q / u )  - ( ' l / q I u )  -t d E l / q l u ) )  

-k {['Bo - (&/(qia) - ( ' l / q / o ) ) ] *  - ('!f;/q?u)} K B u .  (2.31 b) 

Thus the coherent locators are functions of ( ~ f / q f o ) ,  (Ef/q;,,) and (qlu). The self-consistent 
equations for (E1/q fu) ,  (Ef /q ;u)  and (q Iu )  are implicitly expressed by 

(2.32) 

where Q is gi/qiu , Ef/qfu and qiu. Note that C(Ei) is a function of ZAU and ZBu (equations 
(2.18b)-(2.18d)), which depend on (&/q;),  (&=fu/qfu) and (qiu) as given by equations 
(2.31a)-(2.31b). The number of quantities to be determined self-consistently is reduced 
by the symmetry consideration. Particularly, in the half-filled band qiu becomes spin- 
independent and we solve the self-consistent equations only for the three quantities 
(E/q), (g2/q2)  and(q) for both the ferromagnetic and antiferromagnetic states. 

We can perform our calculations for a given set of model parameters, U ,  &k, n and 
T ,  asfollows. We start our calculation with trial valuesof (&/qfU), (E;/q;u) and (qio), from 
which EAU(&) and are obtained by equations (2.31~) and (2.31b). For the &-field 
integration given by equation (2.32), the saddle-point values of mi, v i ,  n; and hi with qiu 
are determined for each &from equations (2.25a)-(2.25d). By using equations (2.18b)- 
(2.18d), we calculate the local energy, w i ( f l ) ,  and the concentration, C(&), with which 
the new averages of (&/qiu), (gfu/q?u) and (qJ  are obtained by equation (2.32). The 
iteration is continued until the new results of (Ei/qjU), (lj?u/qfu) and (qiu) agree with the 
old ones within an assumed accuracy. Once this convergence is achieved, we can calculate 
various physical quantities such as ( m )  and (mf) .  

Before showing numerical results, we discuss the interpolating character of our 
theory. 

2.3. Interpolating character of the theory 

2.3.1. T = 0 K. At T = 0 K we get from equations (2.31~) and (2.31b), 

E A o  xJu E B u  = XIu (2.33) 

because (E:/q;u) = (lj,/q,,)*. We can evaluate the functional integral for the &-field at 
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the saddle-point values given by equations (2.25a)-(2.25d). The ground-state values of 
n ,  m and q, are determined by these saddle-points. 

In particular, for the ferromagnetic state, the density of states is given by 

Po(&) = 401P"t(& - v + aE)/qo) 

which denotes the narrowed bands. The free energy is given by 

(2.34) 

F I N ,  = U6 + q ,  I*';" dxxpo(x)  
0 --r 

(2.35) 

where xF0 = ( p  - v + csE)/q, and N ,  is the number of atoms. This is just the result of 
Gutzwiller's approximation, as Kotliar and Ruckenstein (1986) showed. 

2.3.2. High-temperature limit. At sufficiently high temperatures where the effect of 
electron correlation becomes unimportant, we get 

410 = 1 J ,  = U ,  = U , .  (2.36) 

A combination of equation (2.36) with equation (2 .  i.5) yields 

6, = (a) (n f  - m f ) .  (2.37) 

From equations ( 2 . 1 8 ~ )  and (2.37) we get the local energy given by 

v(E,> = u-'[Ef - v;(6,)1 + 1 dEf(E) Im + (x,u - z A o ) K A o l  (2.38) 

where X,,, zAo and KAo are given by equations (2.20) and (2.21) but with q,u = 1.0. This 
expression for W(Q agrees with that of the HH theory (Hasegawa 1980a). Thus the 
present theory in the high-temperature limit reduces to the HH theory, as we expect. 

2.3.3. Weak-coupling limit. It is necessary to point out that our Gutzwiller-type theory 
includes the HH and Hartree-Fock approximations as special cases. The former is given 
by equations (2.36) and (2.37) as mentioned above. The latter is given when we adopt 

910 = 1 J ,  = U ,  = U ,  6, = t (nf  - m:) ( 2 . 3 9 ~ )  

Z, = X I ,  = [E  - ( U / 2 ) ( ( n )  - ~ ( m ) ) ]  (2.39b) 

disregarding their optimum values to be determined by equations (2.15), (2.20). (2.25) 
and (2.26). The expectation values of (m) and ( n )  are determined by equations (2.29) 
and ( 2 . 2 5 ~ )  with equation (2.39),  the integral over the &-field being evaluated at E ,  = 
(U/2 ) (m) .  In the limit of U/W+ 0 (W being the band width), the conditions given by 
equation (2.39) are satisfied and the present theory reduces to the Hartree-Fock or 
Stoner theory. 

2.3.4. Strong-coupling limit. We consider the case of the half-filled band with infinite 
U/W. The local moment has the saturated value of 1 m, 1 = 1, and then qlo = 1 and 6, = 
0 in this limit. The concentration, C(E,), has a structure with distinct double peaks at 
E,  = +j , /2 .  We can evaluate equation (2.32) at these saddle-points to get the NCel 
temperature (Hasegawa 1980a) 

(2.40) 

where My is the second moment of PO(&) and z is the coordination number. This 

T u  = zJ,,/4 = M ! / U  



Electron correlations in narro w-band systems at jinire temperatures 9335 

Hosegawa - Hubbard approximation 

t 
Present 
theory 

Gutzwiiier approxima+icn 

u/w + 
Figure 1. The U-Tspace showing the interpolation character of the present theory, W being 
the band width (see text), 

expression agrees with the result of the molecular-field theory for the Heisenberg model 
with S = and the superexchange interaction, J s x .  

The interpolation character of the present theory is summarised in figure 1. We 
expect that our theory yields good results for a wide range of physical parameters. 

It is necessary to remark that we cannot prove mathematically that the present theory 
preserves the variational property with free energy that is an upper bound of the exact 
one. We should, however, remind ourselves that, although Gutzwiller’s approximation 
is conventionally referred to as a variational theory, it is nor in the strict sense. In fact, 
it violates the variational property for a non-half-filled band in the one-dimensional 
Hubbard model, yielding lower energy than the exact VMC method (Yokoyama and 
Shiba 1987a). In this broad sense that Gutzwiller’s approximation is variational, we 
expect that the present theory would also be variational, at least for the three-dimen- 
sional systems, judging from the comparison of the calculated results with those of the 
MC method (Hirsch 1986, Scalettar et a1 1988) and VMC method (Yokoyama and Shiba 
1987a,b), as will be shown in the next section. 

3. Numerical results 

3.1. Adopted model 

We performed numerical calculations for the simple-cubic Hubbard model with nearest- 
neighbour hopping t .  The input parameters in our calculations are the non-interacting 
density of states, P O ( & ) ,  the interaction, U ,  and the electron number, n ,  which is unity 
for a half-filled band. We employ the analytic approximate expression for P O ( & )  given 
by Tonegawa (1974), i.e. 

A[9 - ( ~ / 2 t ) ~ ] l / ~  - C[1 - ( ~ / 2 r ) * ] ~ / *  for 1~/2tj 6 1 

[ o  for 1~/2rl > 3 
~ O ( E )  = A[9 - ( ~ / 2 t ) ’ ] ’ / ~  - B[1 - (1&/2r/ - 2)2]1’2 for 1 < /E/2tl 6 3 (3.1) 

where A/2t = 0.101 081, B/2t = 0.128 067 and C/2t = 0.02. The energy and the tem- 
perature are hereafter measured in units of a half of the total band width, W = 12t. The 
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Figurei. The ii-dependenceol'ihcau'ulatlict. magnetibatiuii, (m),  RMSva:uc~~fitsamplitlidc, 
(mt) ,  and fluctuation, (am2),  at T = 0 K,  calculated by the present theory (full curves), the 
Hartree-Fock approximation (broken curves) and KF theory (Kakehashi and Fulde 1985, 
Kakehashi and Hasegawa 1987, 1988) (chain curve). Squares denote the result of the VMC 
calculation (Yokoyama and Shiba 1987b). 

ground-state energy for U = 0 calculated with the use of equation (3.1) is -0.3349, 
which is in good agreement with the exact value of -0.3341 (Yokoyama and Shiba 
1987a). 

The Fermi distribution function is correctly included with the use of the contour 
integral along the complex axis (Hasegawa 1987b). This method considerably reduces 
the computational time and makes the CPA calculation much easier than the conventional 
one along the real axis. 

3.2. Ground-state properties 

The ground-state sublattice magnetisation, (m),  is plotted in figure 2 as a function of U .  
It increases with increasing U ,  and for infinite U it reaches the saturated value of (m,) = 
1.0 pB. Because of the electron correlations, (m,) in our theory is reduced by about 10- 
20% for 0.5 < U < 1.0 from the value in the Hartree-Fock theory, to which the HH 
theory reduces at T = 0 K. This is consistent with the VMC result for a cluster of 63 
(Yokoyama and Shiba 1987b). Qualitatively similar results were obtained in the KF 
theory (Kakehashi and Fulde 1985, Kakehashi and Samson 1986, Kakehashi and Hase- 
gawa 1987,1988). There are, however, quantitative differences between the KF and our 
theories. Even for U - 0.5, (m)  in the KF theory is rather larger than that in ours. We 
note that (m,) forU = 3 in the VMC method is smaller than ours by about 15%. This is 
considered to be due to the finite-size cluster effect; a similar effect is observed also for 
the square lattice (see figure 4 in Yokoyama and Shiba 1987b). 

We should stress that our theory leads to the antiferromagnetic state even for an 
infinitesimally small interaction, just as in the Hartree-Fock approximation (Penn 1966). 
This is in contrast with the previous calculations extending Gutzwiller's approach to 
antiferromagnetism (Ogawa et all975, Takano and Uchinami 1975, Florencio and Chao 
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Figure 3. The ground-state energy, E ,  as a function of the interaction, U. Full, long broken 
and chain curves express E of the AF state calculated by the present theory, the Hartree- 
FockapproximationandtheKFtheory (Kakehashi andFulde 1985, KakehashiandHasegawa 
1987, 1988), respectively. The short broken curve denotes E of the P state calculated by 
Gutzwiller’s approximation (Gutzwiller 1965). Squaresshow the result of theVMccalculation 
(Yokoyama and Shiba 1987b). The inset shows the energy difference between the AF and P 
states in our theory (full curve) and the VMC theory (squares) (see text). 

1976). They predicted a first-order antiferromagnetic-paramagnetic (AF-P) transition at 
afinite U-value of U/Uc = 0.42 (Ogawa eta1 1975), 0.35 (Takano and Uchinami 1975) or 
0.71 (Florencio and Chao 1976), depending on the adopted models and approximations. 
Here U, is defined by 

and it is 2.6792 in our model. In these calculations, the energy of the AF state in their 
Gutzwiller approximation is higher than that in the Hartree-Fock theory. A comparison 
between the energies of the AF state in the Hartree-Fock theory and the P state in 
Gutzwiller’s approximation leads to a first-order transition. We show in figure 3 the 
ground-state energies calculated by various methods. The energy of the AF state in the 
present theory is in good agreement with those of the VMC method. We note that the 
energy of the P stzte in Gutzwiller’s approximation is lower than that of the AF state in 
the Hartree-Fock theory for interactions less than U = 0.82, which corresponds to 



9338 H Hasegawa 

the critical interaction for a first-order transition obtained in previous approximations 
(Ogawa et a1 1975, Takano and Uchinami 1975, Florencio and Chao 1976). Our theory 
leads to the ground-state energy of the AF state which is lower than that in the Hartree- 
Fock theory for all U-values we investigated. The inset of figure 3 shows the energy 
difference between the AF and P states in the Gutzwiller-type approximations. The 
energy of the AF state of the VMC method (Yokoyama and Shiba 1987b) is compared 
with the P-state energy in Gutzwiller’s approximation given by (Vollhardt 1984) 

E / N ,  = -(uc/8)(i - up,)’ for U < U ,  (3.3) 

where U, = 2.6731 is employed. The results of the VCM calculation shown by squares are 
in good agreement with ours. The energy difference gradually vanishes on approaching 
U = 0 from above, which shows the second-order AF-P transition at U = 0. Our con- 
clusion is supported in part by a calculation of the ground-state staggered susceptibility, 
which diverges for an infinitesimal U because of perfect nesting of the Fermi surface (see 
appendix 2). The same conclusion was claimed by Kotliar and Ruckenstein (1986), 
although an explicit result of their energy calculations has not been reported yet. 

The chain curve in figure 3 expresses the ground-state energy caiculated by Kakehashi 
and Hasegawa (1987, 1988) using the KF theory. In this local approach matrix elements 
are evaluated within the single-site or so-called R = 0 approximation in the second- 
order perturbation expansion (Kajzar and Friedel 1978, Treglia et aZl980, Stollhoff and 
Thalmeier 1981, Oles 1981). We note that the agreement between the results of KF 
theory and the VMC method (or ours) is excellent for U < 2 although it becomes worse 
by degrees for larger U-values, which is inherent in the expansion-type KF theory. This 
is consistent with the calculations of Stollhoff and Thalmeier (1981) and Oles (1981) 
showing that the R = 0 approximation works quite well for transition metals, in which 
interactions are expected to be comparable with or less than the d band width. 

Solutions of (q ) ,  (6) and ( j ) / U ,  in both P and AF states, are shown in figure 4. For the 
P state we get the analytic solution given by 

(6) = i ( l  - U / & )  ( 3 . 4 ~ )  

< j ) / U =  + W U , ) / ( 1  + u/uc>’. (3.4b) 

Equations (3.3)-(3.4) show that (a), ( j ) ,  (q )  and E vanish at U = U,, which is referred 
to as the critical interaction for the metal-insulator transition (Brinkman and Rice 1970); 
related discussion will be given in § 4. When the interaction is increased from the zero 
value, (q) ,  (6) and ( j ) / U  of the AF state gradually depart from those of the P state. The 
effect of electron correlations is most significant in the intermediate-coupling regime, 
0.5 s U s 1.5, where the effective exchange interaction and the band-narrowing factor 
are @/U - 0.75 and (q )  - 0.95. For larger U interactions, and (q)  are increased 
again, approaching unity for infinite U.  The renormalisation effect of electron cor- 
relation on (@ is negligibly small in the half-filled case (see appendix 1). 

The root-mean-square (RMS) values of the amplitude of sublattice magnetisation, 
(m:), and its fluctuations defined by (am2) = (m:) - ( w z ) ~  are plotted in figure 2 as a 
function of U. Although the Hartree-Fock approximation conventionally assumes that 
(m:) = (m)2 and (6m2) = 0, we also show, for comparison, the result calculated with the 
use of equation (2.30) but with 6 replaced by dHF = $(l  - ( w z ) ~ ) .  Both ( W Z ; ) ’ ’ ~  and 
(6m2)’i2 have the exact value of 1/2/2 at U = 0. With increasing U ,  (m:) increases, 
approaching the atomic limit of 1.0 pB, while (am’) decreases. The magnetic-moment 

(4) = 1 - ( U / W 2  
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Figure 4. The U-dependence of (a), (q )  and (j) /CJ for the AF (full curves) and P (broken 
curves) states. The arrow denotes U, defined by equation (3.2). 

fluctuation in our theory is larger than that in the above approximation because 6 < aHF 
and (m)  < (m)HF for a given U. 

3.3. Finite-temperature properties 

The temperature dependence of sublattice magnetisation is plotted in figure 5 for various 
U-values. The full, broken and chain curves express the results in the present theory, 
the HH and the KF theories, respectively. For small U ,  the (m) versus T curve deviates 
downwards from the Brillouin curve for S = 4, while for strong interactions it follows 
the Brillouin function. The KF theory yields. for U = 1.0, a peculiar temperature depen- 
dence in (m) ,  decreasing rapidly just below the Nee1 temperature. This was claimed to 
be due to the effect of electron correlations (Kakehashi and Hasegawa 1987, 1988). 
Such a temperature dependence is, however, not obtained in our theory. Recent MC 
calculations (Scalettar et a1 1988) suggested a weak first-order transition for weak 
interactions in the model, although further studies are required to clarify this point. 

Figure 6 shows the temperature dependence of (q ) ,  (6) and ( ] ) /U.  When the tem- 
perature is raised from T = 0 K, both ( q )  and ( j )  decrease. The effect of electron 
correlations is significant even at temperatures of the order of T N ,  although at the high- 
temperature limit the effect is expected to diminish. The double occupancy, (a), for U = 
1.0 and 1.5 shows little temperature dependence although that of U = 0.5 decreases 
slightly as the temperature is raised. The temperature dependences of (6) reflect on 
those of the amplitude of local moments, (m:), through the relation given by equation 
(2.30). The temperature dependence of amplitudes of local magnetic moments is shown 
in figure 7. When the temperature is raised from T = 0.0 to T = 0.20, the ground-state 
valuesof(m:)'12 areincreasedby13%,5% and3%for U = 0.5,1.0andlS,respectively. 
We note that (m:)'/* has only a small temperature dependence, particularly for large U ,  
with almost the same amplitudes in both the AF and P states. Our result is in fairly good 
agreement with those of the MC and KF theories, whose results for U = 1.0 are plotted 
for comparison. 
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Figure 5.  The temperature dependence of sublattice magnetisation, (nr), foi various inter- 
actions calculated by the present theory (full curves) and the HH theory (Hasegawa 1979, 
1980a, Hubbard 1979) (long broken curves). The chain curve denotes (m) for U =  1.0 
calculated by the KF theory (Kakehashi and Fulde 1985, Kakehashi and Hasegawa 1987, 
1988). The short broken curves show (m) obtained by the HH theory using the effective 
interaction (see text). 
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Figure 6. The temperature dependence of (4) (upper full curves), (6) (lower full curves) and 
( j ) / U  (broken curves). 
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Figure 7. The temperature dependence of the RMS values of amplitude of local moment, 
(mS)’/2.  Full and broken curves denote the results of the present theory and the HH theory 
(Hasegawa 1979, 1980a, Hubbard 1979), respectively. The chain curve and circles show 
(m:)]!* for U = 1.0 in the KF theory (Kakehashi and Fulde 1985, Kakehashi and Hasegawa 
1987, 1988) and the MC theory (Hirsch 1986), respectively. The arrow denotes the value 
( l / d 2 )  for non-interacting systems ( U  = 0) at T = 0 K. 

The U-T phase diagram calculated in our theory is shown in figure 8, where those 
obtained in other theories are also plotted. The NCel temperature in our theory reduces 
to those of the Hartree-Fock and molecular-field approximations in the weak- and 
strong-coupling limits, respectively, as mentioned before. Our TN curve has a maximum 
at U - 1.7 while those of the HH and KF theories are at U - 1.35 and 1.5, respectively. 
In the range 0.5 s U S  1.5, our NCel temperature is about 2&30% lower than that of 
the HH theory. A reduction in TN from that of the HH theory is realised in our calculation 
even at U 2 1.5, where the KF theory leads to almost the same TN as the HH theory. 

The double-dot chain curve in figure 8 shows the U-Tphase diagram calculated using 
Moriya’s ‘unified’ theory (Moriya and Takahashi 1978, Moriya and Hasegawa 1980), 
which belongs to the interpolation approaches discussed in the introduction. The 
Moriya-Takahashi (MT) theory employed the vector-field, static functional-integral 
method and it reduces, in the strong-U limit, to the spherical model. We note that TN in 
the MT theory is one-fifth to one-sixth of that of the HH theory (Kakehashi and Hasegawa 
1987, 1988). This large difference is mainly attributed to a neglect of quantum fluc- 
tuations in the vector-field (static) functional-integral method, which cannot lead to 
exact results either in the atomic limit or in the weak-coupling limit. In the former limit, 
it yields TN E S 2  instead of S(S + 1). 

The Nee1 temperature calculated by Hirsch (1986) and Scalettar et a1 (1988) with the 
MC simulations are shown by open and filled circles, respectively, in figure 8. Kakehashi 
and Hasegawa (1987, 1988) pointed out that Hirsch’s calculation using a cluster of 43 
greatly overestimated TN partly due to a finite-size effect and partly due to an improper 
mean-field boundary condition that he adopted. The recent MC calculation made by 
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Figure 8. The U-T phase diagiam bliowirig the alitiferromagilctic (AT] state, paramagnetic 
metal (PM) and paramagnetic insulator (PI) ,  calculated by using the present theory (full 
curves), the HH theory (Hasegawa 1979,1980a, Hubbard 1979) (long broken curves), the KF 
theory (Kakehashi and Fulde 1985, Kakehashi and Hasegawa 1987, 1988) (chain curves) 
and the MT theory (Moriya and Takahashi 1978) (double-dot chain curves). Open and filled 
circles show the MC results obtained by Hirsch (1986) and Scalettar er a1 (1988), respectively. 
Short broken curves denote TN in the Hartree-Fock (HF) theory and molecular-field (MF) 
and high-temperature (HE) expansion approximations for the Heisenberg model. 

Scalettar et a1 (1988) for larger clusters of 43-103 yielded TN about 3 0 4 0 %  less than 
those of Hirsch for U < 1. The Nee1 temperature calculated by the HH and KF theories 
are in good agreement with that of the MC method of Scalettar eta1 (1988). Our theory, 
however, leads to TN about 30% smaller than their MC result. We expect that the NCel 
temperature of Scalettar et a1 (1988) is still overestimated for the following reasons. 
Scalettar et a1 (1988) estimated TN from the xs versus V plot for temperatures, where xs  
denotes the staggered susceptibility and V the volume of the cluster. When xs  appears 
to increase with Vfor a given temperature, they regarded it as the NCel temperature. 
As an alternative, we plotted the x;' versus Tcurve, from which we estimated the Weiss 
constant, 0,  defined by x;' - ( T  - 0 )  at T z=- TN. We got 0 = 0.043 and 0.075 for U = 
I and 1, respectively, while Scalettar et a1 (1988) obtained TN = 0.055 and 0.075 from 
their analysis. This shows that their TN is nothing but 0 and that their TN is still 
overestimated; note that O/TN = 6.00/3.83 in the strong-interaction limit. Indeed, the 
NCel temperature of their MC calculation reduces, in the strong limit, not to the exact TN 
of the high-temperature expansion theory but to a higher one of the molecular-field 
approximation. For more precise determination of Ts from MC data, it is necessary to 
establish and adopt a finite-size scaling relation. 

4. Conclusions and discussion 

We have discussed the finite-temperature band theory, which takes into account effects 
of both electron correlations and local spin fluctuations, by combining the Kotliar- 
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Ruckenstein functional-integral method (Kotliar and Ruckenstein 1986) with the alloy- 
analogy approximation (Hubbard 1979, Hasegawa 1979,1980a). Our unified theory has 
the interpolation character describing sensible cross-overs between the low- and high- 
temperature limits and between the weak- and strong-coupling limits (figure 1). In 
the course of this development, we have reformulated Gutzwiller’s approximation by 
introducing the effective interactions (j, 6‘) with the Green function method. This helps 
us to calculate various quantities easily and to interpret the calculated results physically. 

We have established the extension of Gutzwiller’s approximation to antiferro- 
magnetism. It has been shown from the calculations of the energy (figure 3) and the 
susceptibility (appendix 2 )  that the antiferromagnetic state is stabilised at T = 0 K for 
an infinitesimal interaction in the simple-cubic lattice. This conclusion is in agreement 
with those of Kotliar and Ruckenstein (1986) and the VMC method (Yokoyama and 
Shiba 1987b). It is, however, in contrast with previous results (Ogawa et a1 1975, Takano 
and Uchinami 1975 , Florencio and Chao 1976), which yielded afirst-order P-AF transition 
at finite U-values. It is suggested that, although the VMC calculations (Yokoyama and 
Shiba 1987a, b) are generally in good agreement with our ground-state results, the VMC 
sublattice moment for 2U/W = f may be underestimated due to a finite-size cluster 
effect. 

Our finite-temperature calculations (figures 5-8) have demonstrated that the effect 
of electron correlations is considerable even at temperatures of the order of T N .  The KF 
theory (Kakehashi and Fulde 1985) for electron correlations at finite temperatures 
yields qualitatively similar results as the present theory. Their results are, however, 
quantitatively rather different from ours, even for 2U/W - 0.5. This is not unexpected 
because the KF theory is based on the second-order perturbation method (Stollhoff 
and Fulde 1978) with respect to the projection operator, which is, roughly speaking, 
proportional to the interaction U. We have pointed out that the NCel temperature 
obtained by the recent MC calculation (Scalettar et a1 1988) is still overestimated though 
their TN is much reduced compared with Hirsch’s (1986) result. 

We should remember that the effect of local spin fluctuations plays essential roles to 
reconcile the localised and itinerant-electron models (Hubbard 1979, Hasegawa 1979). 
In fact, if we neglect this effect in the present approach, it reduces to the theory of Chao 
and Berggren (1977), which has a serious difficulty in calculating the entropy stemming 
from local moments, as discussed in the introduction. The HH theory, which takes into 
account the effect of local spin fluctuations but neglects the electron correlations, has so 
far been applied to various problems of transition-metal magnetism. In these calculations 
the interaction is chosen such as to reproduce the ground-state moment observed 
experimentally or  obtained by detailed band calculations. In order to check the validity 
of this approach, we repeated calculations for the simple-cubic model by using the HH 
theory. We adopted the interaction U ,  which is chosen to reproduce (m)  at T = 0 K 
obtained in our new theory. This approximation is expected to be a good one if I, Uand 
qo have only a small temperature dependence. Unfortunately it is not the case in general, 
as figure 6 shows. Nevertheless, the calculated results shown by short broken curves in 
figure 5 are in semi-quantitative agreement with those in the present theory. This justifies 
the previous calculations based on the HH theory. By using our newly developed theory, 
we can discuss magnetic and thermodynamic properties of transition metals in more 
detail. 

It would be interesting to compare the present alloy-analogy theory with Hubbard’s 
on electron correlations (Hubbard 1964). By using the Green function decoupling 
approximation, Hubbard took into account the scattering and resonance broadening 
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corrections. The former has an analogue with disorder scattering in an alloy and the 
latter describes the dynamic effect of motion of (-a)-spin electrons on the propagation 
of a-spin electrons. If we include only the scattering correction, the medium for a-spin 
electrons is regarded as a binary alloy in which two species of atoms have random 
potentials of U/2 and - U/2 with concentration and 1 - (L~), respectively. In this 
case Hubbard's approximation is equivalent to the CPA and the site-diagonal Green 
function is given by equations (2.20a)-(2.24) but with the concentration and the locator 
replaced by 

(4. la)  

(4. lb )  

with 

c+  = 1 - c-  = (a-,) 5' = Z(U/2) q;  = 1. (4.2) 
Here the index t (=?) expresses species of atoms in the binary alloy. On the other 
hand, our alloy-analogy theory regards the system as a multi-component alloy, which is 
characterised by the continuous distribution of the &-field. This leads to a unified 
description covering the weak- and strong-U limits. Applying the local saddle-point 
approximation to an integral over the &-field, we can treat the system as a binary alloy 
in which the concentration and the locator are given by equations (4.1~2) and (4.lb) with 

C' = 1 - c- = 1/[1 + exp(-/3Aq)] 

5' = [js(nT, mT, 6T)/2]mT 
(4.3) 

q;  = q;(n', m', 6'). 
Here and q: (t = k) are functions of the saddle-point values of nT, mT and 6' as given 
by equations (2.15) and (2.26a), and A V  = V ( 5 - )  - V(5 ' )  stands for the difference 
between local energies at the two saddle-points of E' (see equation (2.1%)). When 
we compare equation (4.2) with equation (4.3), we note some differences in these 
expressions. The concentration in our theory depends explicitly on the temperature, 
though its temperature dependence in Hubbard's theory arises implicitly through (nu).  
The renormalised and qu are used in our theory while Hubbard employed their bare 
values in equation (4.2). Despite these ostensive differences, however, the two binary- 
alloy approximations have similar physical ingredients. It is expected that the band 
narrowing represented by qu in our theory mimics, to some extent, the motional nar- 
rowing due to the resonance broadening discussed in Hubbard's theory. The present 
theory has the advantage of being free from the well known defect in Hubbard's theory 
that each sub-band does not exactly contain one state per atom for the case of a half- 
filled band. 

Hubbard (1964) discussed the metal-insulator transition in his paper on electron 
correlations. He showed that there is a critical ratio of the interaction to the band width 
such that when it is exceeded the system behaves as an insulator with a vanishing density 
of states at the Fermi level. We plot the almost vertical lines in figure 8 as those along 
which we get P ( E ~ )  = 0, eF being the Fermi level. Regarding these lines as the metal- 
insulator boundary, after Hubbard (1964), we constructed the phase diagram showing 
the antiferromagnetic insulator (AF), paramagnetic insulator (PI) and paramagnetic 
metal (PM). This type of phase diagram is widely observed in many materials such 
as V,03(McWhan and Remeika 1971). On the contrary, Brinkman and Rice (1970) 
proposed an alternative mechanism for the metal-insulator transition in a half-filled 
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non-magnetic band by using Gutzwiller’s approximation. They showed that it takes 
place at U = U,, beyond which the double occupancy, (a), and the band-narrowing 
parameter, (q ) ,  vanish, yielding the localisation of electrons, U, being defined by 
equation (3.2). Extending this idea to the finite-temperature case, Kotliar and Ruck- 
enstein (1986) suggested that a first-order metal-insulator transition occurs at a tem- 
perature of order W2/U where ( q )  vanishes. These speculations are, however, not 
realised in the present calculations. At T = 0 K, the antiferromagnetic state is stabilised 
at U < U, and ( q )  in the antiferromagnetic state does not vanish even at U > U,, as figure 
4 shows. This is consistent with earlier suggestions (Florencio and Chao 1976). Recent 
investigations (Kaplan et a1 1982, Yokoyama and Shiba 1987a) showed that the Brink- 
man-Rice-type metal-insulator transition does not occur even in the non-magnetic state 
of one- and two-dimensional systems when the calculation is performed exactly with the 
use of Gutzwiller’s wavefunctions. Our calculation in figure 6 shows that ( q )  does not 
vanish also at finite temperatures, although it decreases from its zero-temperature value. 
Rather we expect that (q )  increases to approach unity at higher temperatures where the 
effect of electron correlation becomes unimportant. We may conclude from these 
considerations that the Brinkman-Rice-type metal-insulator transition characterised 
by ( q )  = (6) = 0 is not realised either in the ground state or at finite temperatures in the 
half-filled simple-cubic model. The condition p(+) = 0 is expected to provide us with a 
more reasonable criterion for its metal-insulator transition. 

We expect that the present theory has wide applicability to a variety of problems, 
such as magnetism and superconductivity, in which electron correlations play important 
roles. The effect of electron correlations on magnetism in alloys, surfaces and thin films 
may be discussed by using the present formalism in which the self-consistent equations 
are expressed in terms of local quantities. The result reported in the present paper is 
relevant to the properties of superconductivity described by the Hubbard model with 
the attractive interaction ( U  < 0) (Nozieres and Schmit-Rink 1985). The U-dependence 
of the Nee1 temperature shown in figure 8 may be interpreted as that of the super- 
conductingcritical temperature, T,, whose maximumvalueisshown to be 2T,/W - 0.06. 
In recent years, much attention has been paid to two-dimensional Hubbard anti- 
ferromagnets, stimulated by the discovery of high- T, superconductors. The mechanism 
leading to superconductivity in the nearly half-filled Hubbard model with purely repul- 
sive interactions has been investigated by various methods. We hope that the present 
theory is useful and meaningful for these subjects. 
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Appendix 1 

In the half-filled band, the band-narrowing factor, qio, given by equation (2.15) is spin- 
independent and becomes 
q = q(n = I, m, S) = 26[(1 + m - 2 ~ ) ” ~  + (I - m - 26)’I2I2/(1 - m 2 )  (Al .  1) 
where the index i is suppressed for simplicity. The m- and &dependences of q are shown 
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the half-filled band. The relevant &value is 
less than 6 ,  = 4 (1 - m2)  shown by arrows, 
for which j / U  < 1 and 89/86  > 0 (see 

6 text) 

in figure Al, where we also plot .f calculated by equations (2.26~). When m = 0, .f is 
given by 

. f /U = 6(3  - 46)/(1 - 26). (A1.2) 

The effective exchange interaction, .f, is always reduced by the effect of electron cor- 
relations. Figure A 1  shows that we get .f/U > 1 for 6 > 6, = $ (1 - m*), 6,  being shown 
by arrows. This is, however, never realised because the self-consistent equation (2.25d) 
has no solutions for 6 > 6,  where aq/a6 < 0; note that R,, < 0. The effect of electron 
correlations on Uis negligibly small for the half-filled band. In particular we get U / U  = 
1.0 regardless of U when m = 0. 

Appendix 2 

We will show the calculation of the ground-state susceptibilities in terms of the effective 
exchange (.f) and Coulomb (q interactions defined by equations (2.26u)-(2.26b). 

When an infinitesimal uniform or staggered magnetic field h, ((U = U or s) is applied 
to the non-magnetic system at T = 0 K, an induced magnetic moment, m,, is given by 

(A2.1) 

where xu ( f s )  is the irreducible uniform (staggered) susceptibility. The form of the 
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molecular field, E,, depends on the approximation to be adopted. In the Hartree-Fock 
approximation, we have 

EF = ( ~ / 2 ) m ,  x, = x: (A2.2) 

which yields the well known result 

x!F = 2xo,/(1 - ux:> (A2.3) 

x: being the non-interacting susceptibility. In our Gutzwiller-type theory, the molecular 
field is given by equation (2.25a), namely, 

Ea = [ . f (n ,  m = 0,6)/2]m,. (A2.4) 

A simple calculation leads to the irreducible susceptibility given by 

x, = xon/q(n, m = 0,s) (A2.5) 

from which we get 

X, = mO,/q)/(1 - jx:/q). (A2.6) 

In the case of the half-filled band, we get the susceptibilities with the use of equations 
(3.4), (A1.2) and (A2.6) as 

(A2.7) 

where U,is given by equation (3.2). The uniform susceptibility (a = U) given byequation 
(A2.7) is the same as Brinkman and Rice (1970) obtained by calculating the second- 
order energy shift due to an applied field. Equation (A2.7) shows that the staggered 
susceptibility (a = s) for the half-filled simple-cubic model in our approximation 
diverges for an infinitesimal interaction because of the singularity in x! just as in the 
Hartree-Fock approximation (Penn 1966). 

A calculation of the charge susceptibility goes along parallel lines when we use the 
effective Coulomb interaction, U ,  defined by equation (2.26b). 

The susceptibility at finite temperatures can be calculated by usingjand Ualong the 
HH theory (Hasegawa 1980a); details will be reported in a separate paper. 
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